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Goals 
1. A stable base for a robot with a high center of mass. 

2. Sturdiness for defense. 

3. Agility for fast maneuvering. 
4. Reliability and simplicity. 

5. Easy maintenance. 
6. Consistent ramp climbing. 

 

Engineering design and prototypes 
 

Swerve: 
Swerve is a drive system that uses two  
motors per wheel: One motor controlling the  

orientation of the wheel and the second one ro-
tating the wheel itself. 

Pros: 
•High maneuverability 

• Can strafe 
• Can't be pushed easily 

 
 Cons: 

• Complicated 
• Heavy 

• Makes the chassis higher 
 

Tank: 
Tank is the most common FRC chassis 

drive. it 
has 2-4 wheels on each side and a belt or 

chain connecting the wheels. 

Pros: 
• Can’t be pushed easily 

• Robust, sturdy 
• Simple to drive and design 

Cons: 
• Can’t strafe 

Chassis—Tank Drive Base 
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Final Mechanism—Tank 
 

This year we decided to make our own custom made chassis. We chose to make 

a West Coast Drive, because tubing is our most accessible form of aluminum pro-
duction. The WCD (West Coast drive) is a standard design among FRC teams. 

On the off-season we used 8” pneumatic wheels for off road driving. 
We decided not to make the octocanum and the swerve prototypes because of 

time and cost problems. 
 

Prototype conclusions: 
• WCD works better than the Kit of Parts 

chassis (AndyMark chassis) and is  
•simpler to build and maintain. 

• E4T encoders have various connectivity 
issues and break easily. 

• 3 mini CIMs are better than 2 CIMs and 
are worth the space. 

 

Mechanism breakdown: 
• Four 6” pneumatic wheels for falling 
off ramp. 

• Two 6” omni wheels for easier turn-
ing. 

• #35 chain for driving all the wheels. 
• Maximum speed of 5.1 m/s. 

• 3 mini CIM gearbox for each side. 
• 63R encoder on the middle wheel ax-

is. 

 

Gearbox: 
We have decided to use 3 mini-CIMs configuration instead of the more common 
2 CIMs configuration, because mini-CIMs cool faster than CIMs, and when the 

heat expands the bushings, in the CIM it affects the CIM’s efficiency a lot more 
than the bearings in the mini-CIM; so, to prepare for long competition days, we 

chose the 3 mini-CIMs.   



5 

Bellypan: 
The Bellypan has 2 goals: 1) Give structural rigidity to the chassis, and 2) Help 
connect the mechanisms on the bellypan. Since at first we wanted to connect the 

electronics onto the bellypan, we needed material that was rigid and light. We 
tried Pertinax, which is extremely thin plywood held together by epoxy, common-

ly used for industrial electronic boards as it is a very bad electricity and heat con-
ductor. However, it was quite heavy and not rigid enough, as some of the pulleys 

that hold the lift that were connected straight to the bellypan broke it. After that 
incident, we swapped the bellypan to be out of 3mm aluminum 6061-t6, and de-

signed a new electronics board that is not connected immediately to the bellypan 
so the electriconics board doesn’t touch the electrically-conducting aluminum. 

 

Electronics board: 
In the off-season, we wanted to make the electronics board an integral part of 
the bellypan, by making it be the bellypan itself. However, after we realized that 

finishing the electronics board before the integration into the skeleton of the ro-
bot could save us a lot of time, we decided to redesign the entire thing into a 

different, 3-levels high electronics board out of 4mm polycarbonate. 
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Goals 
1. Placement of Cargo and Hatch panels in the Cargo ship and in all levels of the 

rocket. 

2. Scoring from both sides (forwards and backwards). 
3. A low center of mass. 

 

Literature Review 
 

Shooter: 
Pros: 

• Allows for a very low center of mass. 

• Lightest lifting mechanism. 
• Allows scoring from all points of the 

field. 
Cons: 

• Requires high degrees of precision- 
Cargo is 13” in diameter, Port is 16”. 

• Requires a lot of prototyping and iteration. 
• Requires a different mechanism for hatch panels. 

 

Multi-jointed Arm: 
Pros: 

• Allows the easiest scoring from both sides. 

• Simplest and most reliable. 
Cons: 

• Harder to control (both for drivers 
and software). 

• Constantly shifts the center of 
gravity. 

 

Cascade/Continuous Elevator: 
Pros: 

• Fastest scoring. 
• Easiest to control and program. 

• Most experience with design
(2018). 

Cons: 

Lifting—Continuous Elevator 
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Final Mechanism—Double Stage Wristed Continuous  
Elevator 
 

Elevator stages: 
• Doesn’t exceed 1.2m when stowed. 

• 2 elevator stages to reach 3rd level Rocket 
and 5x16x5 mm bearings press against outer 

face of the tubings and slide off the elevator 
tubes. 

• Bearing blocks were initially 3D printed but 
swapped out for aluminum. 

 

Continuous cable rigging: 
• Cascade was preferred initially, but the geometry didn’t allow for backward 
cargo shooting.  

• Cables were preferred for their very light weight, as demonstrated in previ-
ous robots (2018).  

• 3D printed pulleys fit on the side of the elevator to avoid cable collision with 
Cargo in backwards shooting.  

• Horizontal and diagonal system of pulleys brings the cables to the side of 
the robot from the central winch. Cable tensioners fit on both pull-ups to keep 

both sides equally tensioned. 
 

2 775 RedLine Flipped Elevator Gearbox: 
• 20:1 reduction Gear ratio reduction. 

• 3.6V stall voltage allows motors to stall without burning. 
• Max speed of up to 3 m/s. 

• Two 3D printed 45 mm diameter PLA 
winches with Delrin core for extra 

strength. 
• 4 tapped holes along the winch to allow 

iteration on fleet angle. 
• A thread winch was originally used, but 

was proven useless as the strong tension 
forces in horizontal rigging caused the 

cable to skip threads. 

• SRX Mag encoder on winch axis. 
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Goals  
1. Quick Cargo grabbing. 

2. Tight holding of the Cargo, so it won't fall when facing defense. 

3. Moving out from/in to the robot's frame perimeter. 
4. Simplicity and easy fixing. 

 

Engineering Design and Prototype 
 

3 fingers arm: 
A 3 fingers arm is a robotic arm with 3 fingers that grabs the Cargo similarly to a 
human arm. 

Pros: 
• Helps center game pieces to ensure the Hatches’ stability when attached. 

Cons: 
• Uncommon in FIRST. 

• Slow. 
• Complicated. 

• Takes a lot of space. 

Horizontal roller: 
Spins and grabs Cargo. Can be with/without wheels. 
Pros: 

• Fast. 
• Easy to design, build, and maintain. 

• Reliable. 
Cons: 

• No centering ability. 
• Hard to use by drivers. 

• Weight. 

Rubber bands: 
Rubber bands move into the robot for intake. 

Pros: 
• Fast. 

Cons: 
• Harder to use for the drivers. 

• A lot of points of failure. 

Cargo Intake—Horizontal Roller wrist 
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Final Mechanism—Horizontal Roller with Wheels 
 

Prototype conclusions—Horizontal roller: 
This mechanism grabbed very quickly and efficiently and did answer all of our 
goals. Prototyped with the right compression to grab all Cargo within given toler-

ance. 
 

Mechanism breakdown: 
The mechanism goes inside the 

frame perimeter in 2 situations: 
1. At the beginning of a match. 

2. Backwards shooting. 
Uses 4 wheels in total: Two 4’’ 

mechanum and two 4’’ compli-
ant. 

Very simple and easy to change, 
fix or replace. 

Curved inwards on the sides to 
grab Cargo from wider angles. 
 

 
 
 
Wrist gearbox: 
Made to retract the whole intake 
inside the robot's frame perimeter 

at the beginning of the match, as 
well as help to shoot the cargo 

backwards. This gearbox had to 
change the angle of the intake 

with a cargo inside it. Because of 
that, we wanted the gearbox to be 

strong as well as fast. We used 
one 775pro motor with a 88:1 ra-

tio to achieve the best 
speed:torque ratio. 
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Hatch Grabber—Latching Fingers  

Goals 
1. Grabbing of Hatches without dropping them on the floor. 

2. Low precision required for alignment on the loading station. 

3. Extention outwards for easier Hatch placing. 
4. Light weight. 

 

Engineering Design and Prototype 
 

Pivoting arm: 
Rotating arm that can put Hatches on the Bay. 
Pros: 

• Can grab from the floor. 
Cons: 

• Heavy. 
 

Hook and loop tape: 
Using a weaker hook and loop tape than those on the Rocket and Cargo Ship 

to grab and hold Hatch panels. 
Pros: 

• Easy. 
• Light. 

• Requires few actuations. 
Cons: 

• Requires alignment. 
• Regular wear—The hook and loop tape on the competition field might not 

be changed, causing us to be unable to score or unable to grab. 
• Unreliable under certain loads and speeds of the lift. 

 

Latching fingers: 
Fingers that grab the hatch panel from the inside. 

Pros: 
• No chance of hatch panel falling. 

• Requires low alignment. 
Cons: 

• Heavy. 
• Requires many actuations. 
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Final Mechanism—Latching Fingers 
 
Fingers: 

• Fingers powered by a pneumatic 
piston. 

• Head and back of the fingers are 
3D printed out of PLA. 

• Fingers and pivot points printed 
out of rubber for extra gripping 

and for avoiding any breaking 
from unexpected loads. 

 

Back plate: 
• Back plate out of polycarbonate for equal force distribution between all 3 
fingers. 

• Back plate can extend to 250mm with a pneumatic piston. 
• Custom rails made out of a 3D printed block and a Delrin rod connected to 

the back plate, to avoid rotation on the piston. 
• There was an attempt to use rails, however, our tolerances weren’t good 

enough and broke them. 



12 

 

 

Goals 
1. Climbing in a short duration of time. 

2. Reliability, no danger to the robot. 

3. No requirement of a very specific placing of the robot in front of the Hab. 
4. Operation on low voltage, as the climb is at the end of the game. 

 

Engineering designs 
Prototypes 

Four stretcher-like legs: 
Four legs hidden in the chassis that would be pushed open by four linear motion 
systems.  

Pros:  
• Compact – fits inside the chassis. 

• Fast. 
Cons: 

• Requires four, very strong linear motion systems. 
• Unstable during some parts of the climb. 

Two linear motion systems with motored wheels on the front: 
Two linear motion systems at the back of the robot, with motored wheels mount-

ed on an arm at the front. The robot gets pushed from the back, drives on the 
wall with the wheels and then slides onto the platform. 

Pros: 
• Low weight. 

• Fast. 
Cons: 

• Unreliable, the arm can slide. 

Parallelogram climb: 
A bunch of profiles that form a parallelogram. 

Pros:  
• Compact – fits inside the chassis. 

• Fast. 
Cons:  

• Requires precise placing of the robot. 
• Very complicated. 

• Needs to be modeled alongside the chassis and is hard to make changes to. 

Climbing Mechanism—Lead Screws 
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Four linear motion systems climb: 
Four linear systems on the four corners of the robot that lift the robot up. The ro-
bot is then driven forward by a propulsion system that is mounted at the bottom 

of the linear motion system. 
 

Pros: 
• Fast. 

• Stable. 
• Does not require specific placement of the robot. 

• Does not endanger the robot, as in the case of power loss it will just go back 
down. 

 

Linear Motion System 
 

Pneumatic pistons: 
Extending pistons based on air pressure. 
 

Pros: 
• Easy to get. 

• Comes in a variety of strength and strokes. 
• Does not require electricity – no power loss danger. 

Cons: 
• Only has two states: fully extended or fully retracted. 

• Uses air pressure, which is also used by other systems on the robot, meaning 
that the pressure in the tank may go too low for the robot to use the system. 

• Weighs a lot compare to alternatives. 
• Unstable due to only having two states. 
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Mechanical pistons (lead screws): 
Extending pistons based on lead screws powered by a motor. 
 

Pros: 
• When using trapezoidal lead screws, the screws self-lock, meaning they 

don’t move unless the motor moves, so in case of power loss the robot won't 
fall down. 

• Doesn’t need a big gearbox as the screw itself does most of the RPM to 
torque conversion . 

• Takes minimal room on the robot. 
• Low weight compare to alternatives. 

Cons: 
• Hard to get (but possible). 

• Requires a motor. 
• Comes in specific strengths and strokes. 

• Not common in FIRST. 
 

Pull down with ropes: 
A rope connecting between the winch and the top of the profile, that when the 

winch spins gets pulled down and lifts up the robot. 
 

Pros: 
• Very common in first. 

• Requires a motor. 
Cons:  

• Weighs a lot compare to alternatives. 

• Takes up a lot of room on the robot. 
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Final Mechanism: Climbing 
 

Climbing: 
• 775pro propels each leg with a ratio 
of 5:1 before leadscrew.  

• 4 lead screws with 12mm diameter 
and 6mm pitch, each can hold up to 

1000N of force. 
• Custom made aluminum blocks to 

hold the nut. 
• Can climb up the ramp in 1.3 sec-

onds.  
• Adapted gear to move the nut. Gear-

boxes connected to bumper holders 
and main profiles of drivetrain. 

 

Motion Forward: 
• 80:1 sports planetary gearbox driven by a 775 pro.  
• Shaft in profile to drive both sides at the same time.  

• Custom 3D printed gears to drive both sides. 
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Custom gearboxes: 
We started building our own custom gearboxes in 2018 with the help of our 
mentors. designing your own gearboxes has a lot of benefits, with very few dis-

advantages. Custom gearboxes are cheaper, lighter, more robust and are more 
easily maintainable than bought gearboxes; also, with the AMB design calculator 

that our mentors made for us and for the rest of FRC, we can design our gear-
boxes to be faster and fit the mechanism’s needs, stay high on the efficiency 

curve and not ruin our motors. On the robot, we have 8 custom gearboxes and 1 
sports planetary gearbox. 
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Manufacturing tools: 
 
This year, our team got a new 1.2x1.2 meters CNC router and a new 3D printer, 

so we expanded our manufacturing tools options, and increased our precision 
and speed, thanks to the router we were able to manufacture almost exclusively 

in house. 
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RealSense 

The RealSense D435 camera is an Intel depth camera. Unlike most cameras used 
in FRC robots that provide a two-dimensional color image (i.e., without any dis-

tance information from the objects in the picture), the RealSense camera addi-
tionally provides a 3D black and white image that corresponds to the color im-

age. The RealSense camera calculates the distance from each pixel in the image 
by using an IR beam projector and a pair of adjacent stereo cameras. Because 

there are two cameras, there’s a slight difference between the two images, Using 
this difference the RealSense camera utilizes a trigonometric calculation to cal-

culate the distance from each pixel. 

 
We chose to use RealSense because the advantage of accurate distance meas-

urement is necessary in order to autonomously align the robot with targets and 
game pieces quickly and accurately. Additionally, specifically this year it's much 

harder to measure accurate distance from game pieces using traditional ways 
due to the nature of the objects, the RealSense easily solved this problem. 

With the benefits of the RealSense camera it also comes with many problems we 
had to deal with, such as the need for strong processing power, the difficulty of 

operating the two cameras simultaneously, and working with the camera as op-
posed to a webcam. During the season we were able to overcome all the prob-

lems through many attempts, joint thinking and reading articles on the internet. 
After learning how to use the camera, we started working with two cameras sim-

ultaneously, improving camera accuracy and improving code performance when 
using the cameras. 

Microsoft LifeCam HD-
3000 

RealSense Device 

Cheap, small, easy to 
use, used in previous 
years 

Accurate distance meas-
urement, small, High im-
age quality 

Pros 

Mediocre image quality, 
no additional measure-
ments 

Very expensive, Requires 
relatively strong pro-
cessing power, Harder to 
use 

Cons 

Vision 
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On our robot there are two RealSense cameras facing two different directions. 

The first is directed towards the robot's Hatch Panel system and is responsible 
for detecting Hatch Panels on the floor and light reflectors of both game pieces. 

The second camera is directed in the other direction and is responsible for the 
identification of Cargo and the identification of Cargo light reflectors. In this way 

the robot can reach any target without driver assistance. 
 

Framework: 
We noticed a common trait about past years Vision code and that was that it 

wasn’t very well organized making it hard to understand and there was also a lot 
of repetition. So during pre-season we decided we wanted to change that and 

after putting some thought into it we decided to build a modern modular frame-
work for vision that will make it much easier for us to create vision targets. 

Modern modular design usually includes a stat-
ic main file that loads other files that can be 

modularly created, in our case each file was a 
vision target with pre-set functions that could 

be overridden for every target, this allows for 
customizability and simplicity at the same time 

while being simple to use. You can choose to 
override only specific functions and leave the 

rest default which works for most vision tar-
gets. 

 

Our idea: 
This design made it very easy to add new tar-

gets and made sure we didn’t have to repeat 
any code because all we had to do is create a 

new vision target instead of wasting time on 
everything around it. 
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Neural Network: 
Up until this year we used classic detection for every target, this year during pre-
season we decided to test out a new and modern way to do object detection - 

neural networks. 
Neural networks are inspired in their design by the neural networks that consti-

tute human and animal brains. 
Neural networks are computing systems, that try to simulate the brain with a 

mathematical model that takes a lot of inputs, put them through a very compli-
cated mathematical expression, repeat a few times and lets out a series of out-

puts, the job of neural networks is to find extremely complicated patterns in 
seamlessly patternless things. 

We started by researching everything revolving deep learning and neural net-
works for object detection and found that there are many different technologies 

and ways to go about it. 

Neural network VS classic detection for game pieces comparison: 

Criteria Classic detection Neural networks 

Ability to detect com-
plex objects 

Could be virtually im-
possible to get con-
sistent results 

Not a problem due to 
its learning method 

Speed Usually fast, depends 
on complexity 

Fairly fast 

Accuracy Usually not accurate Very accurate 

Calibration Requires color calibra-
tion 

None required 

Complexity Fairly simple to imple-
ment 

Harder to implement 

Reusability Can’t be reused, ob-
ject specific 

Can be reused for new 
objects 

Lighting variability Very susceptible Usually not susceptible 
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Types of Object Detection Networks 
 

Segmentation: 
Provides you with specific contour and separates image into segments 
Pros: 

• Provides you with easy to work with and more specific information. 

Cons: 
• Very heavy, requires a lot of processing power. 

• Requires more data. 

• Much harder to label. 

Bounding box: 
Outputs a bounding rectangle that includes parts that aren’t the actual object 
Pros: 

• Relatively fast. 

• Accurate. 

• Easy to label. 

Cons: 
• Hard to work with and not a specific bounding box. 

We decided to use a bounding box network due to speed and the fact that we 

don’t necessarily need the specific contour and rather a bounding box suffices. 

Dataset: 
The dataset is the input of the neural network, we took a few thousand photos of 
the object we wanted to detect and labeled them (selected the object in every 

photo using a bounding rectangle).  
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After you’ve created your dataset you need to train the neural network, we used 

a pre-configured model that was already trained on the COCO dataset which is a 
huge dataset containing around 300 thousand labeled images. By using this we 

improved training time and accuracy because the network already knows what 
objects are and now only has to learn one more. 

In order to train effectively you need a strong computer and usually one with a 
strong graphics processor, we used a server that had a Quadro P100. 

During training, we used tensorboard which visualized all the data so we could 
use it effectively and know what to change between training sessions, we dis-

played images that it was inferring every so often during training and data about 
accuracy. 

Neural Networks for Cargo detection—a complex solution 
for a simpler problem. 
While attempting to create a neural network for cargo detection we realized that 
were much better off making simpler detection to it, this is because the cargo is 

very easy to distinguish from other targets due to its color and shape. Sometimes 
looking back at what you're doing goes a long way. 

 

Results: 
The results were very surprising, the neural network was able to infer in real time 
at around 10fps on the Jetson co-processor. The network was also able to detect 

a partially obscured hatch and a hatch that was very harshly exposed, including 
when the which we noticed happened quite often. 
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Cargo: 
As cargo is a very simple and distinct target, recognizing it with traditional image 
recognition is easier and more efficient. 

Using OpenCV, we acquired the contours and first filtered them out based on the 
cargo’s unique orange color and the contour’s solidity, then eliminated any inner 

contours created by reflections, and finally applied edge detection to separate 
one cargo from another. 

 

Reflection Tape: 
The reflecting tape targets this year were unique in the fact that each correct 
pair consisted of two (2) tape pieces angled inwards (i. e., towards each other), 

which was useful for recognizing and telling apart the targets. We first detected 
them individually and then used their rotation in relation to x in order to pair 

them. 
The measurements required for control were taken from the middle point be-

tween the two, meaning the distance was the average of the distances from their 
centers. 

 
Bay Chooser: 
We decided to create an algorithm that chooses a bay (i. e., tape target) to go to 

based on the game piece attached to it and the game piece the robot is carrying. 
This will aid drivers and at the sandstorm period since we are able to know which 

cargo bay to drive to automatically. 
We recognize the tape targets and the pieces present using neural networks and 

classic detection, after that we check if they're in the correct threshold of coordi-
nates and choose depending on which game piece is currently on the robot. 

After that we were able to send the measurements of the chosen target back to 
the NetworkTables for control. 

 

Camera Offset: 
This year since the cameras weren’t centered, we had to compensate the center 
angle and distance so that the robot can center the target correctly instead of 

centering in relation to the camera. We did this using some basic trigonometry. 
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Jetson: 
The NVIDIA Jetson is an embedded computing device designed to provide per-
formance while being small and power efficient. It is currently considered the 

best and most powerful co-processor for FRC teams among many other options 
that we considered: 

We first received an NVIDIA Jetson TX1 development kit through FIRST Choice 

so we started exploring Its capabilities and working with it. later on we purchased 
an additional Jetson TX2 which has about twice the performance of the TX1, It 

was nice to know that the performance definitely won’t be a limiting factor for us 
this year. 

Powering the Jetson:  
The Jetson cannot be connected to the normal VRM modules and instead has to 

be powered using an external buck booster. 
Results: 

The Jetson performed very well, on the TX2 we were able to run classic detection 
and a neural network while pulling frames from both RealSense cameras. 

 
Issues: 

• The Jetson TX1/TX2 comes with a development kit that includes a lot of IO 

and options but is very large physically. There are smaller carrier boards that 

you can purchase to fit the Jetson module onto a smaller footprint, after some 
research we found that the Auvedia J120 is the most viable option. 

• Operating the Jetson module requires moderate knowledge of embedded 

systems and linux. 

Device Raspberry Pi Intel UP board NVIDIA Jetson 

Pros Cheap, easy to use Fairly high perfor-
mance, easy to use 

Very high perfor-
mance, GPU 

Cons Very low perfor-
mance 

Less information, 
medium price 

High cost, hard to 
set up, requires 
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Autonomous Pathing and Path Pursuit 
Starting from the pre-season we decided to try and use a pure pursuit controller 

for this year’s autonomous drive. We based our algorithm on Team 1712’s paper, 

which takes on the controller as the main source for our program. We spent the 
next few weeks learning, writing and improving the controller to meet our needs 

and expectations and by the end of the pre-season we had it almost completely 
sorted out with a few things we left for the time when we get our new robot for 

the 2019 season. 
Once the season kicked off and we got our mission, we realized that the current 

path generation wouldn’t help us in this year’s game. Destination: deep Space re-
quires a precise angle to be able to place the game pieces. Our current program 

was only able to reach a certain point without any consideration for the ending 
heading. We realized we have to find a different way to generate a path that is 

both effective and finishes at the right angle that’s when we came across Dubins 
path. Dubins path is a method to find the shortest curve between two vectors in 

a two dimensional plane in consideration that the vehicle can only move forward. 
Dubins Path also takes into account the maximal curvature , The initial and termi-

nal headings. 
After a week or two of studying and writing the code for the method we had 

been able to use this algorithm and our pure pursuit controller to reach a certain 
point and angle on the field. 

We thought we had everything ready for the new robot and so when we got it 
from Engineering sub-team we began running tests on it but things weren’t run-

ning as smoothly as we were hoping it would. Small mistakes, things we forgot to 
do and some overdue things we should have done before the robot arrived set us 

back with testing fully autonomous code on the robot. 
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The Systems of Our Robot 
The Drivetrain:  
For the drivetrain’s motor controllers we use one Talon SRX on each side and two 

Victor SPXs which follow the Talon SRX. On top of the motor controllers we use 
the navX-MXP as our IMU the navX is essential for our autonomous drive since 

this algorithm relies on the navX to know the current heading of the robot. 

Hatch Intake:  
The hatch intake system itself consists of two double solenoids that need open 
and fold.  An issue that came with it was the fact that if we had either the gripper 

or the extension plate open while lifting the elevator past a certain height, the 
system would struck and  hurt itself and the cameras. To solve this issue, we add-

ed a safety feature that closes the Hatch system before the elevator is raised or 
lowered past that breaking point. This is an improvement from last year’s robot. 

In that robot, we just prevented the elevator from moving if the Power Cube in-
take was folded. This year we made the program a bit more complex and made 

the robot to reach the desired state (raising the elevator). As simple as it was to 
program the system delayed us quite a bit, a few mechanical problems that we 

didn’t spot made us think we did something wrong and were hard at trying to 
find a solution for it while not knowing it wasn’t even our issue. 

Cargo Intake:  
The Cargo Intake system uses one Talon SRX for controlling the angle of the 

wrist with an absolute CTRE SRX Mag Encoder as its feedback device. This sys-

tem also uses a proximity sensor on the side of the wrist so it knows automatical-
ly when to stop intake process of the Cargo. The wrist uses the built in Talon SRX 

motion profiler “Motion Magic” to control the angle of the wrist. ”Arbitrary feed-
forward” is used to keep the wrist in place at any position. 

The function we used was a simple cosine function with some adjustments to fit 
the needed current to support the wrist and ended with this function: 
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Elevator: 
The elevator uses a Talon SRX motor controller to control the elevator move-
ment, with a second motor controller allowing the elevator to rise. 

To negate the effects of gravity, we use a constant arbitrary feedforward, which 
keeps the elevator in place. 

Taking in consideration the way our elevator is built, we had to split this constant 
into two separate heights. 

When programming the elevator, we put a lot of emphasis on preventing possi-
ble threats and clashes between the systems. we wanted the drivers not to have 

any worries about destroying the robot, so we added the following ‘safety fea-
tures’: 

• The elevator closes all mechanisms that might collide with the robot when  

moving. 

• The elevator can’t go above an allowed height that we pre-defined. 

• The elevator automatically resets its position when reaching the bottom, to 

negate any error which had accumulated. 

 

Motion Magic: 
The main motion profile we used for our wrist and elevator subsystems was the 
talon SRX’s motion magic. The unique thing about the motion magic motion pro-

file is that in contrast to other motion profiles, it does not rely on generating tra-
jectory points. Instead the motion profile uses a Trapezoidal Motion Profile, 

which can be explained using the following graph: 
 

 




